Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(43): e2302980, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376838

RESUMO

A feasible nanoscale framework of heterogeneous plasmonic materials and proper surface engineering can enhance photoelectrochemical (PEC) water-splitting performance owing to increased light absorbance, efficient bulk carrier transport, and interfacial charge transfer. This article introduces a new magnetoplasmonic (MagPlas) Ni-doped Au@Fex Oy nanorods (NRs) based material as a novel photoanode for PEC water-splitting. A two stage procedure produces core-shell Ni/Au@Fex Oy MagPlas NRs. The first-step is a one-pot solvothermal synthesis of Au@Fex Oy . The hollow Fex Oy nanotubes (NTs) are a hybrid of Fe2 O3 and Fe3 O4 , and the second-step is a sequential hydrothermal treatment for Ni doping. Then, a transverse magnetic field-induced assembly is adopted to decorate Ni/Au@Fex Oy on FTO glass to be an artificially roughened morphologic surface called a rugged forest, allowing more light absorption and active electrochemical sites. Then, to characterize its optical and surface properties, COMSOL Multiphysics simulations are carried out. The core-shell Ni/Au@Fex Oy MagPlas NRs increase photoanode interface charge transfer to 2.73 mAcm-2 at 1.23 V RHE. This improvement is made possible by the rugged morphology of the NRs, which provide more active sites and oxygen vacancies as the hole transfer medium. The recent finding may provide light on plasmonic photocatalytic hybrids and surface morphology for effective PEC photoanodes.

2.
J Anal Sci Technol ; 13(1): 23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789562

RESUMO

Due to the widespread emergence of COVID-19, face masks have become a common tool for reducing transmission risk between people, increasing the need for sterilization methods against mask-contaminated microorganisms. In this study, we measured the efficacy of ultraviolet (UV) laser irradiation (266 nm) as a sterilization technique against Bacillus atrophaeus spores and Escherichia coli on three different types of face mask. The UV laser source demonstrated high penetration of inner mask layers, inactivating microorganisms in a short time while maintaining the particle filtration efficiency of the masks. This study demonstrates that UV laser irradiation is an efficient sterilization method for removing pathogens from face masks.

3.
ACS Nano ; 16(4): 5795-5806, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311268

RESUMO

One-dimensional hybrid nanostructures composed of a plasmonic gold nanowire core covered by a shell of magnetic oxide nanoparticles (Au@FexOy NWs) were synthesized by a one-pot solvothermal synthesis process. The effects of reaction temperature, time, reducing agent, and precursor as well as postsynthesis treatment were optimized to produce highly uniform NWs with a diameter of 226 ± 25 nm and a plasmonic core aspect ratio of 25 to 82. By exploiting the interaction of NWs with an external magnetic field, precise arrangements into highly periodic photonic structures were achieved, which can generate distinctive structural colors that are vividly iridescent and polarization-sensitive. Furthermore, a Bouligand-type chiral nematic film consisting of multistacked unidirectional layers of achiral NWs was fabricated using a modified layer-by-layer deposition method, which displays circular dichroism (CD) and chiral sensing capability. The addition of bovine serum albumin (BSA) as a model protein analyte induced a concentration-dependent wavelength shift of CD peaks. These intriguing properties of magnetoplasmonic anisotropic NWs and their self-assemblies could be consequently valuable for developing nature-inspired structural color imprints as well as solid-state chiral sensing devices.


Assuntos
Nanopartículas , Nanoestruturas , Nanofios , Nanofios/química , Ouro/química , Nanoestruturas/química , Nanopartículas/química , Dicroísmo Circular
4.
Analyst ; 146(24): 7682-7692, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34812439

RESUMO

Bacillus spores are highly resistant to toxic chemicals and extreme environments. Because some Bacillus species threaten public health, spore inactivation techniques have been intensively investigated. We exposed Bacillus atrophaeus spores to a 266 nm Nd:YVO4 laser at a laser power of 1 W and various numbers of scans. As a result, the UV laser reduced the viability of Bacillus atrophaeus spores. Although the outer coat of spores remained intact after UV laser irradiation of 720 scans, damage inside the spores was observed. Spore proteins were identified by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry during the course of UV laser irradiation. Photochemical and photothermal processes are believed to be involved in the UV laser sterilization of Bacillus spores. Our findings suggest that a UV laser is capable of sterilizing Bacillus atrophaeus spores.


Assuntos
Bacillus , Esporos Bacterianos , Lasers , Esporos , Esterilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...